ORIGINAL PAPER

A one-pot synthesis of *N*-alkylthiazoline-2-thiones from CS₂, primary amines, and 2-chloro-1,3-dicarbonyl compounds in water

Issa Yavari · Mehdi Sirouspour · Sanaz Souri

Received: 1 August 2009/Accepted: 21 November 2009/Published online: 16 December 2009 © Springer-Verlag 2009

Abstract A simple synthesis of *N*-alkylthiazoline-2thiones by reaction of primary amines, carbon disulfide, and 2-chloro-1,3-dicarbonyl compounds in water is described. Proceeding without catalyst under one-pot conditions in high yields and with broad scope, this method high synthetic utility.

Keywords *N*-Alkylthiazoline-2-thione \cdot Primary amine \cdot Carbon disulfide \cdot 2-Chloro-1,3-dicarbonyls

Introduction

Thiazoline-2-thiones are an important class of heterocyclic compounds. They are used as powerful ligands, which react with copper(II) chloride and bromide [1] and silver(I) bromide [2]. *N*-Alkylthiazoline-2-thiones are precursors in the synthesis of some electron-rich olefins, which are used as readily accessible cation radical species and act as a molecular conductors [3, 4]. In addition, *N*-alkylthiazoline-2-thiones are used as a diffusion transfer color photographic materials [5].

Synthesis of *N*-alkylthiazoline-2-thiones by treatment of alkylammonium dithiocarbamates with α -haloketones followed by cyclization and dehydration in the presence of an acid has been reported [3, 6–9]. Ethyl 3-alkyl-4-hydroxy-2-thioxothiazolidine-4-carboxylates have been prepared in excellent yields by reaction of the corresponding primary amines with carbon disulfide and ethyl 3-bromo-2-oxopropanoate in the presence of anhydrous potassium

phosphate in DMF at room temperature [10]. Recently we described a synthesis of ethyl 3-alkyl-4-oxo-2-thioxo-1,3-thiazolane-5-carboxylates by reaction of primary amines with CS_2 in the presence of diethyl 2-chloromalonate [11]. In this paper, a simple synthesis of *N*-alkylthiazoline-2-thiones by reaction of primary amines, carbon disulfide, and 2-chloro-1,3-dicarbonyl compounds in water is described; the reaction is a development of the pathway reported by Lamon and Humphlett as a three-component procedure in water (Scheme 1). This new catalyst-free, one-pot synthetic method seems facile; the work-up procedure is easy and gives pure target compounds containing several potential centers for further modification.

Results and discussion

The reaction of primary amines, carbon disulfide, and 2-chloro-1,3-dicarbonyl compounds in water produced *N*-alkylthiazoline-2-thiones **3** in high yields. The structures of compounds 3a-3i were apparent from elemental analysis, mass, IR, and NMR spectra. Mass spectra, in particular, showed the molecular ion peaks at the appropriate m/z values. The ¹H and ¹³C NMR spectroscopic data, and IR spectra, are in agreement with the proposed structures. The ¹H NMR spectrum of **3a** in CDCl₃ showed three sharp singlets for the methyl protons. The ¹³C NMR spectrum of 3a exhibited seven signals in agreement with the proposed structure. The ¹H NMR and ¹³C NMR spectra of 3b-3i are similar to those for 3a except for the substituents, which showed characteristic resonances in appropriate regions of the spectrum. After reaction of 4-chlorobenzylamine, CS₂, and ethyl 3-chloroacetoacetate at room temperature intermediate 6i was isolated and characterized.

I. Yavari (⊠) · M. Sirouspour · S. Souri Chemistry Department, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran e-mail: yavarisa@modares.ac.ir

Scheme 1

Scheme 2

Mechanistically, the reaction starts with formation of an alkylammonium dithiocarbamate salt **4**, followed by addition to 2-chloro-1,3-dicarbonyl compounds to generate the acyclic dithiocarbamate derivatives **5**. Subsequent cyclization yields 4-hydroxythiazoline-2-thiones **6**. Elimination of water from **6** in the presence of alkylammonium chloride leads to *N*-alkylthiazoline-2-thiones **3** (Scheme 2).

In conclusion, we have described a convenient route to N-alkylthiazoline-2-thiones **3** by reaction of primary amines, CS_2 , and 2-chloro-1,3-dicarbonyl compounds. This catalyst-free and green procedure may be regarded as an alternative method for preparation of N-alkylthiazoline-2-thiones.

Experimental

All purchased solvents and chemicals were of analytical grade and used without further purification. Melting points and IR spectra of all compounds were measured on an Electrothermal 9100 apparatus and a Shimadzu IR-460 spectrometer, respectively. The ¹H and ¹³C NMR spectra were obtained on a Bruker DRX-500 Avance instrument using CDCl₃ as solvent and TMS as internal standard at 500 and 125.7 MHz, respectively. The mass spectra were recorded on an HP (Agilent Technology) GCMSQP5050A.

Elemental analyses for C, H, N were performed using a Heraeus CHN-O-Rapid analyzer, and the results agreed favorably with calculated values.

General procedure for the synthesis of N-alkylthiazoline-2-thiones 3

To amine 1 (4 mmol) and 0.92 g CS₂ (12 mmol) in 7 cm³ water was slowly added 2-chloro-1,3-dicarbonyl compound 2 (2 mmol). The reaction mixture was stirred for 2 h at rt and heated under reflux for 4–5 h. Addition of 4 cm³ saturated NaHCO₃ solution caused an oil to separate, which in some cases solidified on standing overnight. The residue was recrystallized from *n*-hexane–toluene mixtures.

1-(2,3-Dihydro-3,4-dimethyl-2-thioxothiazol-5-yl)-1ethanone (**3a**, C₇H₉NOS₂)

Pale brown oil; yield 0.30 g (80%); ¹H NMR (500 MHz, CDCl₃): $\delta = 2.40$ (s, CH₃), 2.67 (s, CH₃), 4.19 (s, CH₃) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 14.4$ (CH₃), 29.9 (CH₃), 41.0 (CH₃N), 121.2 (C), 146.9 (C), 187.3 (C), 188.2 (C) ppm; IR (KBr): $\bar{\nu} = 1,669$ (C=O), 1,648, 1,550, 1,460, 1,430, 1,361, 1,303, 1,279, 1,210, 1,140, 1,123, 990 cm⁻¹; EI-MS: *m/z* (%) 187 (M⁺, 10), 158 (45), 154 (100), 71 (16), 29 (40).

1-(3-Butyl-2,3-dihydro-4-methyl-2-thioxothiazol-5-yl)-1ethanone (**3b**, C₁₀H₁₅NOS₂)

Pale yellow oil; yield 0.39 g (85%); ¹H NMR (500 MHz, CDCl₃): $\delta = 0.90$ (t, ³J = 7.5 Hz, CH₃), 1.35 (m, CH₂), 1.61 (m, CH₂), 2.27 (s, CH₃), 2.60 (s, CH₃), 4.12 (t, ³J = 7.5 Hz, CH₂N) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 13.3$ (CH₃), 14.4 (CH₃), 19.7 (CH₂), 29.1 (CH₂), 29.9 (CH₃), 47.0 (CH₂N), 120.0 (C), 146.5 (C), 187.1 (C), 187.7 (C) ppm; IR (KBr): $\bar{\nu} = 1,663$ (C=O), 1,640, 1,549, 1,448, 1,417, 1,355, 1,300, 1,274, 1,197, 1,157, 1,121, 1,030, 974 cm⁻¹; EI-MS: *m/z* (%) = 229 (M⁺, 15), 196 (60), 158 (55), 71 (16), 43 (100).

1-[3-[(4-Chlorophenyl)methyl]-2,3-dihydro-4-methyl-2-thioxothiazol-5-yl]-1-ethanone (**3c**, C₁₃H₁₂CINOS₂)

Pale yellow crystals; yield 0.46 g (78%); m.p.: 119– 122 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.36$ (s, CH₃), 2.52 (s, CH₃), 5.51 (s, CH₂N), 7.13 (d, ³J = 8.3 Hz, 2 CH), 7.29 (d, ³J = 8.3 Hz, 2 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 15.0$ (CH₃), 30.3 (CH₃), 49.7 (CH₂N), 120.5 (C), 128.1 (2 CH), 129.3 (2 CH), 132.6 (C), 134.1 (C), 146.9 (C), 188.0 (C), 188.7 (C) ppm; IR (KBr): $\bar{\nu} = 1,665$ (C=O), 1,639, 1,552, 1,481, 1,418, 1,354, 1,297, 1,295, 1,200, 1,157, 1,087, 982, 792 cm⁻¹; EI-MS: *m*/*z* (%) = 298 (M⁺, 15), 265 (42), 158 (20), 140 (10), 126 (100).

1-[2,3-Dihydro-4-methyl-3-[(4-methylphenyl)methyl]-2thioxothiazol-5-yl]-1-ethanone (**3d**, C₁₄H₁₅NOS₂)

Pale yellow crystals; yield 0.45 g (82%); m.p.: 129– 130 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.30$ (s, CH₃), 2.42 (s, CH₃), 2.59 (s, CH₃), 5.63 (s, CH₂N), 7.17–7.22 (m, 4 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 15.3$ (CH₃), 21.0 (CH₃), 30.4 (CH₃), 50.6 (CH₂N), 122.0 (C), 127.5 (2 CH), 130.3 (2 CH), 132.9 (C), 138.3 (C), 148.0 (C), 188.6 (C), 189.9 (C) ppm; IR (KBr): $\bar{\nu} = 1,651$ (C=O), 1,640, 1,542, 1,506, 1,419, 1,368, 1,362, 1,295, 1,290, 1,178, 1,168, 802, 744 cm⁻¹; EI-MS: *m/z* (%) = 277 (M⁺, 10), 244 (35), 158 (10), 140 (25), 105 (100).

$\label{eq:linear} \begin{array}{l} 1-[2,3-Dihydro-3-[(4-methoxyphenyl)methyl]-4-methyl-2-thioxothiazol-5-yl]-1-ethanone~(\textbf{3e},~C_{14}H_{15}NO_2S_2) \end{array}$

Yellow crystals; yield 0.44 g (75%); m.p.: 135–137 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.33$ (s, CH₃), 2.52 (s, CH₃), 3.75 (s, CH₃O), 5.47 (s, CH₂N), 6.82 (d, ³J = 8.6 Hz, 2 CH), 7.14 (d, ³J = 8.6 Hz, 2 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 14.8$ (CH₃), 30.1 (CH₃), 49.7 (CH₂N), 55.1 (CH₃O), 114.2 (2 CH), 120.2 (C), 125.9 (C), 127.9 (2 CH), 147.1 (C), 159.2 (C–O), 187.8 (C), 188.4 (C) ppm; IR (KBr): $\bar{\nu} = 1,664$ (C=O), 1,638, 1,551, 1,503, 1,432, 1,350, 1,295, 1,244, 1,177, 1,155, 1,025, 806 cm⁻¹; EI-MS: *m/z* (%) = 293 (M⁺, 7), 260 (30), 158 (10), 156 (20), 121 (100).

1-[3-[(2-Chlorophenyl)methyl]-2,3-dihydro-4-methyl-2-thioxothiazol-5-yl]-1-ethanone (**3f**, C₁₃H₁₂CINOS₂)

Pale yellow crystals; yield 0.41 g (68%); m.p.: 114– 116 °C; ¹H NMR (500 MHz, CDCl₃): δ = 2.40 (s, CH₃), 2.51 (s, CH₃), 5.65 (s, CH₂N), 7.17–7.40 (m, 3 CH), 7.45 (d, ³J = 8.5 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): δ = 14.6 (CH₃), 30.2 (CH₃), 47.7 (CH₂N), 120.3 (C), 126.4 (CH), 126.7 (CH), 129.2 (CH), 129.4 (CH), 131.3 (C), 132.3 (C), 146.9 (C), 186.0 (C), 188.7 (C) ppm; IR (KBr): $\bar{\nu}$ = 1,660 (C=O), 1,640, 1,550, 1,481, 1,424, 1,350, 1,291, 1,285, 1,200, 1,143, 1,079, 980, 790 cm⁻¹; EI-MS: *m/z* (%) = 298 (M⁺, 20), 265 (35), 158 (20), 140 (15), 126 (100).

1-[2,3-Dihydro-4-methyl-3-(1-naphthylmethyl)-2-

thioxothiazol-5-yl]-1-ethanone $(3g, C_{17}H_{15}NOS_2)$

Pale yellow crystals; yield 0.53 g (85%); m.p.: 202–204 °C; ¹H NMR (500 MHz, CDCl₃): δ = 2.48 (s, CH₃), 2.60 (s, CH₃), 6.14 (s, CH₂N), 6.81 (d, ³*J* = 7.0 Hz, CH), 7.43 (t, ³*J* = 8.0 Hz, CH), 7.61 (t, ³*J* = 7.0 Hz, CH), 7.67 (t, ³*J* = 7.0 Hz, CH), 7.90 (d, ³*J* = 8.0 Hz, CH), 8.00 (d, ³*J* = 8.0 Hz, CH), 8.19 (d, ³*J* = 8.0 Hz, CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): δ = 15.1 (CH₃), 30.2 (CH₃), 48.9 (CH₂N), 122.2 (C), 122.6 (CH), 123.4 (CH), 126.3 (CH), 127.1 (CH), 127.5 (CH), 128.9 (CH), 129.8 (CH), 130.7 (C), 131.3 (C), 134.8 (C), 148.1 (C), 188.2 (C), 189.5 (C) ppm; IR (KBr): $\bar{\nu}$ = 1,638 (C=O), 1,561, 1,499, 1,418, 1,378, 1,352, 1,298, 1,285, 1,199, 1,157, 1,045, 1,020, 989, 911, 783 cm⁻¹; EI-MS: *m/z* (%) = 313 (M⁺, 30), 280 (25), 158 (35), 155 (25), 141 (100).

1-(2,3-Dihydro-4-methyl-3-phenyl-2-thioxothiazol-5-yl)-1ethanone (**3h**, C₁₂H₁₁NOS₂)

Yellow crystals; yield 0.32 g (65%); m.p.: 175–177 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 2.32$ (s, CH₃), 2.45 (s, CH₃), 7.34–7.44 (m, 2 CH), 7.54–7.66 (m, 3 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 16.5$ (CH₃), 30.9 (CH₃), 123.0 (C), 129.5 (2 CH), 130.6 (CH), 130.8 (2 CH), 138.8 (C–N), 148.0 (C), 188.6 (C), 190.6 (C) ppm; IR (KBr): $\bar{\nu} = 16,705$ (C=O), 1,650, 1,555, 1,510, 1,444, 1,348, 1,294, 1,249, 1,160, 810 cm⁻¹; EI-MS: *m/z* (%) = 249 (M⁺, 22), 216 (28), 158 (18), 64 (22), 42 (100).

$\label{eq:constraint} \begin{array}{l} \mbox{\it Ethyl } 3\mbox{-$[(4$-chlorophenyl])$methyl]$-2,3$-dihydro-4-methyl$-2-thioxothiazol-5$-carboxylate ($\mathbf{3i}, C_{14}H_{14}ClNO_2S_2$)} \end{array}$

Pale yellow crystals; yield 0.56 g (85%); m.p.: 64–67 °C; ¹H NMR (500 MHz, CDCl₃): $\delta = 1.32$ (t, ³J = 7.1 Hz, CH₃), 2.53 (s, CH₃), 4.29 (q, ³J = 7.1 Hz, CH₂O), 5.50 (s, CH₂N), 7.14 (d, ³J = 7.3 Hz, 2 CH), 7.28 (d, ³J = 7.3 Hz, 2 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): $\delta = 14.1$ (CH₃), 14.3 (CH₃), 49.6 (CH₂N), 61.6 (CH₂O), 128.0 (CH), 128.6 (C), 129.1 (CH), 132.7 (C), 133.9 (C), 147.9 (C), 159.8 (C=O), 189.7 (C=S) ppm; IR (KBr): $\bar{\nu} = 1,690$ (C=O), 1,641, 1,562, 1,474, 1,400, 1,350, 1,293, 1,230, 1,210, 1,137, 1,080, 972, 785 cm⁻¹; EI-MS: *m/z* (%) = 328 (M⁺, 10), 295 (31), 283 (40), 188 (15), 140 (12), 126 (100).

Ethyl 3-[(4-chlorophenyl)methyl]-4-hydroxy-4-methyl-2thioxothiazolidine-5-carboxylate (**6i**, C₁₄H₁₆ClNO₃S₂) Colorless crystals; yield 0.66 g (95%); m.p.: 224–230 °C; ¹H NMR (500 MHz, CDCl₃): δ = 1.29 (t, ³*J* = 7.1 Hz, CH₃), 1.59 (s, CH₃), 4.06 (s, CH), 4.25 (q, ³*J* = 7.1 Hz, CH₂O), 4.84 (d, ²*J* = 15.2 Hz, CH), 5.10 (d, ²*J* = 15.2 Hz, CH), 5.19 (s, OH), 7.28 (d, ³*J* = 8.3 Hz, 2 CH), 7.34 (d, ³*J* = 8.3 Hz, 2 CH) ppm; ¹³C NMR (125.7 MHz, CDCl₃): δ = 13.9 (CH₃), 24.4 (CH₃), 47.5 (CH₂N), 51.8 (CH), 63.0 (CH₂), 97.9 (C), 128.7 (2 CH), 129.0 (2 CH), 133.3 (C), 135.0 (C), 169.9 (C=O), 191.6 (C=S) ppm; IR (KBr): $\bar{\nu} = 3,410$ (OH), 1,705 (C=O), 1,561, 1,499, 1,418, 1,378, 1,352, 1,298, 1,285, 1,199, 1,157, 1,045, 1,020, 989, 911, 783 cm⁻¹; EI-MS: *m/z* (%) = 346 (M⁺, 5), 328 (20), 295 (15), 283 (31), 188 (8), 140 (20), 126 (100).

References

- 1. Cristiani F, Devillanova FA, Verani G (1982) Mol Spectrosc 38:1299
- 2. Cox PJ, Aslanidis P, Karagiannidis P, Hadjikakou S (2000) Inorg Chim Acta 310:268

- 3. Toplak RB, Rocherulle P, Lorcy D (2002) Tetrahedron Lett 43:3879
- 4. Eid S, Guerro M, Lorcy D (2006) Tetrahedron Lett 47:8333
- 5. Hirano S, Takagi Y (1984) US Patent 4,429,036, Chem Abstr 99:46004b
- 6. Humphlett WJ, Lamon RW (1963) J Org Chem 29:2146
- 7. Humphlett WJ, Lamon RW (1963) J Org Chem 29:2148
- 8. Lamon RW, Humphlett WJ (1967) J Heterocycl Chem 4:605
- Dunn AD, Rudorf W (1989) Carbon disulphide in organic chemistry. Wiley, New York, pp 226–315
- Ze-Mei G, Qin L, Shao-Jun Z, Tie-Ming C, Yu-Xin C, Run-Tao L (2006) Chin J Chem 24:381
- Yavari I, Hajinasiri R, Sayyed-Alangi SZ, Iravani N (2008) Monatsh Chem 139:1029